A high-frequency shear device for testing soft biological tissues.
نویسندگان
چکیده
Accurate mechanical property data obtained at large shear deformations and high frequencies are a fundamental component of realistic numerical simulations of soft tissue injury. Although many commercial systems exist for testing shear properties of viscoelastic materials with properties similar to soft biological tissue, none are capable of determining properties at high loading rates necessary for modeling soft tissue injury. Previous custom shear testing systems, though capable of high-frequency loading, indirectly measure tissue properties by using analytical corrections for inertial effects. To address these limitations, a new custom designed oscillatory shear testing apparatus (STA) capable of testing soft biological tissues in simple shear has been constructed and validated. Through a proper selection of sample thickness, direct measurement of material properties at high frequencies is achieved mechanically without analytical inertial adjustments. The complex shear modulus of three mixtures of silicone gel with viscoelastic properties in a range similar to soft biological tissue was characterized in the STA over a dynamic frequency range of 20-200 Hz and validated with a commercially available solids rheometer. The frequency-dependent complex shear modulus measurements of the STA were within 10% of the rheometer measurements for all mixtures over the entire frequency range tested. The STA represents substantive improvement over current shear testing methods by providing direct measurement of the shear behavior of soft viscoelastic material at high frequencies. Mechanical property data gained from this device will provide a more realistic basis for numerical simulations of biological structures.
منابع مشابه
Quantification of Interfibrillar Shear Stress in Aligned Soft Collagenous Tissues via Notch Tension Testing
The mechanical function of soft collagenous tissues is largely determined by their hierarchical organization of collagen molecules. While collagen fibrils are believed to be discontinuous and transfer load through shearing of the interfibrillar matrix, interfibrillar shear stresses have never been quantified. Scaling traditional shear testing procedures down to the fibrillar length scale is imp...
متن کاملVerification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading.
Modeling human body response to dynamic loading events and developing biofidelic human surrogate systems require accurate material properties over a range of loading rates for various human organ tissues. This work describes a technique for measuring the shear properties of soft biomaterials at high rates of strain (100-1000 s(-1)) using a modified split Hopkinson pressure bar (SHPB). Establish...
متن کاملUltrasonic shear wave properties of soft tissues and tissuelike materials.
Determinations of shear wave speeds of sound and attenuation coefficients are reported for soft tissues, a silicone rubber reference material, and a gel used in manufacturing ultrasonically tissue-mimicking materials. Fresh bovine tissues were investigated, including calfskin, liver, cardiac muscle, and striated muscle. Because of the very large shear wave attenuation coefficients, reasonably a...
متن کاملSurface instability of sheared soft tissues.
When a block made of an elastomer is subjected to a large shear, its surface remains flat. When a block of biological soft tissue is subjected to a large shear, it is likely that its surface in the plane of shear will buckle (appearance of wrinkles). One factor that distinguishes soft tissues from rubberlike solids is the presence--sometimes visible to the naked eye--of oriented collagen fiber ...
متن کاملA Mathematical Approach for Describing Time-Dependent Poisson’s Ratios of Periodontal Ligaments
Periodontal ligament is a thin layer of soft tissue that connects root of a tooth to the surrounding alveolar bone. These ligaments play an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. The majority of such soft tissues exhibit as viscoelastic bodies or have a time-dependent behavior. Due to the viscoelastic behavior of the periodontal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 30 7 شماره
صفحات -
تاریخ انتشار 1997